개요 기존에 작성한 그래프를 목적에 맞게 수정 및 변경할 수 있다. Figure Object를 활용한다. 데이터 불러오기 및 가공 tips 데이터를 불러온 뒤, 데이터를 가공하여 평균 값을 구한다. import plotly.express as px tips = px.data.tips() tips_mean_day = tips.groupby("day").mean().reset_index() tips_mean_day.head() 막대 그래프 작성하기 기본 막대그래프를 작성한다. 그런데, X축의 값을 보면 요일별로 정리가 안된 것을 확인할 수 있다. 이 부분을 수정하도록 한다. fig = px.bar(tips_mean_day, x = 'day', y = 'tip') fig.show() 막대 그래프의 X 라벨 변경하기 우선 막대그래프의 순서를 변경하도록 한다.
개요 High-Level API 형태인 Plotly Express에 대해 학습하도록 한다. Plotly Express는 간단하게 말하면 Pandas Dataframe과 직접적으로 연동이 가능하다. 보다 직관적으로 그래프를 시각화할 수 있기 때문에 초기 밑그림을 그릴 때는 Plotly Express로 작성하는 것이 좋다. 전체 설명 참고자료 : Plotly Express in Python Plotly Express 요약 Plotly Express Function은 graph_objects를 기반으로 작성되며, 그래프의 반환값도 plotly.graph_objects 형태이다. 공식 문서에는 약 30개 이상이 그래프 유형이 존재하는 것으로 알려지고 있다. 참조 : plotly.express: high-level interface for data visualization Plotly Express 그래프 종류 Plotly Express currently includes the following functions:
개요 plotly 그래프의 테마를 변경하는 방법에 대해 알아본다. 그래프 테마의 종류 확인하기 우선 기본 그래프를 확인한다. import plotly.graph_objects as go weekly_sales = dict({ "data": [{ "type": "bar", "x": ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"], "y": [28, 27, 25, 31, 32, 35, 36] }], "layout" : {"title": {"text": "Sales of the week", "x": 0.5, "font": {"color": "red", "size": 15}}} }) fig = go.Figure(weekly_sales) fig.show() 그래프 테마를 변경하기 위해 우선 종류를 확인해야 한다.
개요 Plotly 그래프를 다양한 방법으로 내보내는 코드를 작성해본다. 본 블로그에서는 HTML, PNG 두가지 형태로 내보내는 방법을 숙지한다. HTML로 내보내기 plotly figures는 HTML 및 자바스크립트로 구성되어 있다. 소스코드는 아래와 같다. fig.write_html('html_plot.html', config={'toImageButtonOptions':{'format': 'svg'}}) image로 내보내기 이미지로 내보내기 위해서는 아래와 같이 소스코드를 작성한다. fig.write_image('path/to/image_file.svg',height=600, width=850) 그런데, 실행 시, 다음과 에러가 나올 경우 아래와 같이 라이브러리를 설치한다. --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-11-691564193a43> in <module> ----> 1 fig.write_image('img/tutorial.png', height = 600, width = 850) /Library/Frameworks/Python.
Figure Object Figure Object는 크게 두가지로 구성(Attribute)이 되어 있다. data : 여기에서는 그래프와 관련된 각종 정보가 담긴 데이터를 의미한다. 예를 들면, 산점도를 그린다면, X와 Y값의 정보를 확인할 수 있다. 그래프의 색상도 정의할 수 있다. layout : data외의 모든 것은 layout에 속한다. 기본적으로 layout은 그래프의 Styling 요소들이 들어 있다. 예를 들면, X축, Y축의 제목, 색상 등을 변경하고자 할 때는 layout에 접근해야 한다. 간단하게 Figure Object를 정의해본다. import plotly.graph_objects as go fig = go.
개요 Plotly 그래프의 기본 생태계를 익히도록 한다. Plotly 그래프를 작성하도록 한다. 라이브러리 불러오기 본 코드는 모두 Local 가상환경을 설치한 후, Jupyter Lab에서 작성했다. 해당 설치 과정은 본 블로그에서는 생략한다. 참조 : https://dojang.io/mod/page/view.php?id=2470 현재 plotly 버전은 다음과 같다. import plotly print(plotly.__version__) 5.1.0 로컬 환경에서 Jupyter notebook에서 plotly 그래프가 간혹 나타나지 않는 경우가 있다. 그런 경우, 아래와 같이 추가로 설치를 진행한다. jupyter labextension install jupyterlab-plotly 설치가 완료되었다면, 아래와 같은 코드를 추가로 실행한다. import plotly plotly.
개요 Flask 웹개발을 통해 간단한 Resume를 작성해본다. 가상환경 프로젝트 폴더에 가상환경을 설치한다. virtualenv venv created virtual environment CPython3.9.12.final.0-64 in 5343ms creator CPython3Windows(dest=C:\Users\human\Desktop\flask-resume-evan-examples\venv, clear=False, no_vcs_ignore=False, global=False) seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy, app_data_dir=C:\Users\human\AppData\Local\pypa\virtualenv) added seed packages: pip==22.2.2, setuptools==63.2.0, wheel==0.37.1 activators BashActivator,BatchActivator,FishActivator,NushellActivator,PowerShellActivator,PythonActivator 라이브러리 설치 가상환경에 접속 후, Flask 라이브러리를 설치한다. pip install Flask [app.py](http://app.py) 에 다음과 같이 작성한다. from flask import Flask, render_template app = Flask(__name__) @app.route('/') def index(): first_name = 'Evan' return render_template('index.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 개요 기존 Flask-Dash-Heroku 연동 예제를 업그레이드 한다. Flask Factory Application의 기본 개념 및 Blueprint의 기본 개념을 이해한다. Dash App을 Flask Factory Application에 맞추어 가공 한다. 리뷰 기존 필자가 작성해두었던 Flask-Dash-Heroku App을 리뷰한다. 참조 : Flask-Dash-Heroku 연동 참조 : Dash App Using Flask Factory Pattern and Blueprint - 1 미리보기 다음과 같이 메뉴가 있도록 코드를 작성할 예정이다.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 개요 기존 Flask-Dash-Heroku 연동 예제를 업그레이드 한다. Flask Factory Application의 기본 개념 및 Blueprint의 기본 개념을 이해한다. 리뷰 기존 필자가 작성해두었던 Flask-Dash-Heroku App을 리뷰한다. 참조 : Flask-Dash-Heroku 연동 미리보기 다음과 같이 메뉴가 있도록 코드를 작성할 예정이다.
개요 Grafana 대시보드를 다운로드 받고, 그래프를 작성한다. DB 연동을 통해 대시보드를 작성해본다. 설치 Grafana Download 사이트 : https://grafana.com/grafana/download?edition=oss&platform=windows 오픈소스로 다운로드 받는다. 설치가 끝난 이후에는 localhost:3000/login에 접속을 할 수 있다. Sign in 페이지가 나오면 admin을 각각 입력하면, 패스워드 변경하는 입력이 나오면 그 때 각자 본인에게 맞는 패스워드로 변경한다. 필자는 12345678로 지정했다. 첫번째 대시보드 Dashboard를 클릭한다. Add a new panel를 클릭한다. 아래 그림에서 Data source를 클릭한다. Query 탭에 Grafana를 선택한 상태에서 우측 상단의 Apply 버튼을 클릭한다.