공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다.
사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Using cached https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully built pandas-profiling I. 빅쿼리 연동 지난 시간에 데이콘에서 내려받은 데이터를 빅쿼리에 넣는 작업을 진행하였다.
공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다.
사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Using cached https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully built pandas-profiling I. 빅쿼리 연동 지난 시간에 데이콘에서 내려받은 데이터를 빅쿼리에 넣는 작업을 진행하였다.
개요 수집된 데이터에 대해 정규성 검증을 하는 것은 중요하다. 그런데, CB-SEM과 PLS-SEM의 기준 조건은 조금 상이하다. 정규성 분포 확인 Kolmogorov-Smirnov Test 또는 Shapiro-Wilk Test를 통해서 검증한다. 귀무가설: 데이터분포를 정규분포를 이룬다, p-value > 0.05 데이터가 치우쳐 있는 정도를 나타내는 왜도(skewness: S)와 첨도(Kurtosis: K)를 검토한다. 첨도와 왜도가 -1보다 작거나 또는 +1 보다 크지 않으면 변수는 정규분포를 하고 있다고 판단한다. 그러나, 이 부분은 분석 방법에 대해 조금 상이하다. 회귀 분석: 엄밀하게는 2, 관용적으로 3을 사용함.
공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다.
사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Using cached https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully built pandas-profiling I. 빅쿼리 연동 지난 시간에 데이콘에서 내려받은 데이터를 빅쿼리에 넣는 작업을 진행하였다.
공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다.
사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Using cached https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully built pandas-profiling I. 빅쿼리 연동 지난 시간에 데이콘에서 내려받은 데이터를 빅쿼리에 넣는 작업을 진행하였다.
개요 PLS-SEM은 작은 표본 크기에 의해 식별 문제가 발생하지 않으며 모델이 복잡하고 표본크기가 작은 상황에서도 높은 수준의 통게적 검증력을 가짐
일반적으로 CB-SEM의 경우 표본 크기가 200개 이상이 필요한 것으로 알려짐
반대로 PLS-SEM은 30-100개 정도의 소표본인 경우에도 적용할 수 있다.
표본크기를 증가시키면 모델 추정의 정확성이 높아지나 표본이 250개 이상이 넘어가면 CB-SEM과 차이점이 없어진다. 최소 표본 크기 Chin(1988)과 Barclay, Higgins & Thompson(1995)는 최소표본크기 결정에 있어서 10배수 규칙(10 times rule)을 제안함.
단일 잠재변수(구성개념)을 측정하는 데 사용된 형성적 지표 최대수의 10보다 커야 함 구조모델에서 특정 잠재변수(구성개념)로 향하는 경로 최대수의 10배 보다 커야 함 이러한 10배수 규칙에 의하면 PLS-SEM을 사용하는 데 있어서 최소한의 표본크기는 형성적 측정 모델과 반영적 측정모델이 모두 구조모델 속에 포함되어 있는 경우에는 두 기준 모두 적용해 판단한다.
공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다.
사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Using cached https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully built pandas-profiling I. 빅쿼리 연동 지난 시간에 데이콘에서 내려받은 데이터를 빅쿼리에 넣는 작업을 진행하였다.
개요 데이터의 유형에는 크게 4가지가 있다. 명목척도, 서열척도, 등간척도, 비율척도 그중에서 PLS-SEM 분석 시에 필요한 척도는 등간척도와 비율척도이다. 간혹, 범주형 변수의 경우 더미변수(Dummy Variable)로 변환하여 투입하기도 한다. 데이터의 유형 (1) 명목척도 범주형 데이터로 측정된 측정대상으로 단순히 범주로 분류하기 위한 목적으로 숫자를 부여한 척도 예시: 성별, 종교, 직업, 혈액형, 만족여부(예/아니오) (2) 서열척도 범주형 데이터로 명목척도의 기능뿐 아니라 각 범주 간의 대소관계, 순위(서열성)에 관하여 숫자를 부여한 척도(수학적 가감승제 계산 안 됨) 예시: 학력, 건강상태 등 (3) 등간척도 연속형 데이터로 절대적 영점(Absolute Zero)이 없으며 대상이 갖는 양적인 정도의 차이에 따라 등간격으로 숫자를 부여한 척도(수학적 가감승제 계산 가능) 예시: 온도, 만족도(리커트척도), 충성도(리커트척도), 물가지수, 생산지수 등 (4) 비율척도 연속형 데이터로 절대적 영점이 존재하며, 비율계산이 가능한 숫자를 부여한 척도(수학적 가감승제 계산 가능) 매출액, 무게, 가격, 소득, 길이, 부피 등 통계기법의 선택 변수의 성격에 따라 다른 통계기법이 선택될 수 있다.
개요 인과방향에 따라 지표를 반영적 지표(reflective indicator) 형성적 지표(formative indicator)로 구분한다. -반영적 지표는 잠재변수가 원인이 되고 측정변수들이 결과가 되는 지표로 잠재변수가 측정변수를 야기하는 것으로 가정함 형성적 지표는 측정변수가 원인이 되고 잠재변수가 결과가 되는 지표로 측정변수가 잠재변수를 야기하는 것으로 가정함. 화살표의 방향은 측정변수에서 잠재변수로 표시됨. I. 반영적 지표와 형성적 지표 (1) 인과관계(화살표)의 방향 반영적 지표: 잠재변수 $\rightarrow$ 측정변수(지표들) 형성적 지표: 측정변수(지표들) $\rightarrow$ (2) 측정변수(지표)간 상관 반영적 지표: 설문지법 적용 시, 각 설문문항은 유사한 것들로 구성되어 있어야 함
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 I. 개요 지난 시간에 for_loop의 기본적인 개념에 대해 살펴봤다. 참조: [Python] for loops in different ways 이번 시간에는 for_loop의 실제 다양한 활용 방안에 대해 살펴본다. II. 데이터 시각화 변수의 개수에 상관없이 for-loop를 활용하면 무한대로 시각화를 작성할 수 있다.