Hexo Blog 만들기

개요 간단하게 Hexo 블로그를 만들어 본다. I. 필수 파일 설치 1단계: nodejs.org 다운로드 설치가 완료 되었다면 간단하게 확인해본다. $ node -v 2단계: git-scm.com 다운로드 설치가 완료 되었다면 간단하게 확인해본다. $ git --version 3단계: hexo 설치 hexo는 npm을 통해서 설치가 가능하다. $ npm install -g hexo-cli II. 깃허브 설정 두개의 깃허브 Repo를 생성한다. 포스트 버전관리 (name: myblog) 포스트 배포용 관리 (name: rain0430.github.io) rain0430 대신에 각자의 username을 입력하면 된다. 이 때, myblog repo를 git clone을 통해 적당한 경로로 내려 받는다.

데이콘 대회 참여 - 10 데이터 시각화

공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다. 사전작업 한글 시각화를 위해 나눔고딕 폰트를 불러온다. !pip install psankey # sankey diagram %config InlineBackend.figure_format = 'retina' !apt -qq -y install fonts-nanum Requirement already satisfied: psankey in /usr/local/lib/python3.6/dist-packages (1.0.1) fonts-nanum is already the newest version (20170925-1). The following package was automatically installed and is no longer required: libnvidia-common-440 Use 'apt autoremove' to remove it.

Machine Learning Example with Class

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 I. 개요 간단하게 클래스를 만들어보고 한다. 지금까지 배운 내용을 바탕으로 Class를 활용한 머신러닝 예제를 작성한다. II. Class와 Instance는 무엇인가? 클래스는 결국 함수의 연장선이다. 지금까지 함수가 얼마나 편한 것인지를 배웠다. 그런데, 시스템이 복잡해지면 함수 하나로 충분하지 않음을 알게 된다.

How to create my own function

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 I. 개요 나만의 함수를 작성해 본다. 실행가능한 함수를 만들어 본다. II. 기존 내장 함수 함수는 특정 기능을 수행하는 코드를 의미한다. 함수는 Sum(), Len()을 의미한다. x = [1,2,3,4,5] print(sum(x)) print(len(x)) 5 III 사용자 정의 함수 예제 이제 사용자 정의 함수를 사용하자.

머신러닝 데이터 전처리 1 - 결측치 처리

개요 EDA를 진행할 때, 결측치가 있는 데이터를 시각화 하여 결측치 유무를 파악하였다. 참조: EDA with Housing Price Prediction - Handling Missing Values 이번 포스트에서는 결측치를 처리하는 코드를 작성할 것이다. I. 구글 드라이브 연동 구글 코랩을 시작하면 언제든지 가장 먼저 해야 하는 것은 드라이브 연동이다. from google.colab import drive # 패키지 불러오기 from os.path import join ROOT = "/content/drive" # 드라이브 기본 경로 print(ROOT) # print content of ROOT (Optional) drive.mount(ROOT) # 드라이브 기본 경로 Mount MY_GOOGLE_DRIVE_PATH = 'My Drive/Colab Notebooks/inflearn_kaggle/' # 프로젝트 경로 PROJECT_PATH = join(ROOT, MY_GOOGLE_DRIVE_PATH) # 프로젝트 경로 print(PROJECT_PATH) /content/drive Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.

데이콘 대회 참여 - 09 스태킹 알고리즘

공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다. 사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully installed confuse-1.3.0 htmlmin-0.1.12 imagehash-4.1.0 pandas-profiling-2.8.0 phik-0.10.0 tangled-up-in-unicode-0.0.6 tqdm-4.47.0 visions-0.4.4 I. GBM, XGBoost, Lightgbm의 개요 및 실습 부스팅 알고리즘은 여러 개의 약한 학습기(Weak Learner)를 순차적으로 학습-예측하면서 잘못 예측한 데이터에 가중치 부여를 통해 오류 개선하며 학습하는 방식.

Github Project 포트폴리오

개요 본 포스트는 깃허브 프로젝트 관리에 관한 것이다. I. 프로필 작성하기 이력서에 준하는 프로필 또는 유니크한 것을 살리는 것이 좋다. 깔끔한 정장을 입고, 이쁘게 화장을 하고, 면접을 보러가듯이 인사담당자가 보는 이로 하여금 좋은 인상을 심어줘야 한다. 성명, 이메일, 전화번호 등은 가급적 자세하게 기록해두는 것이 좋다. 프로젝트는 현재 진행중인 Pinned Repositories 상위 3~4개 정도 올려 놓는 것이 좋다. 만약에 현재 기여하는 오픈 소스 리퍼지토리가 있다면 반드시 메인 화면에 고정시킨다. II. 깃허브 설치 및 연동 잔디밭은 일종의 열정과 성실함을 보여준다.

데이콘 대회 참여 - 08 세개의 모델

공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다. 사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Using cached https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully built pandas-profiling I. 빅쿼리 연동 지난 시간에 데이콘에서 내려받은 데이터를 빅쿼리에 넣는 작업을 진행하였다.

Pandas Data Handling 1편

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 I. Kaggle에서 타이타닉 데이터 가져오기 캐글 데이터 가져오는 예제는 본 Kaggle with Google Colab에서 참고하기를 바란다. 먼저 kaggle 패키지를 설치한다. !pip install kaggle Requirement already satisfied: kaggle in /usr/local/lib/python3.6/dist-packages (1.5.6) Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.

ch 08 - SmartPLS 소프트웨어 소개

I. SmartPLS 설치 SmartPLS는 구조방정식모델링을 위한 전용 통계분석 프로그램으로 다양한 학문 분야에서 광범위하게 사용됨. 편이성, 친숙성, 안정성 면에서 매우 우수함. 매우 적은 소표본에서도 활용할 수 있음. 정규분포 등의 엄격한 가정 조건에 구애받지 않고 사용할 수 있음. 프로그램 설치는 아래 링크를 클릭한다. Download latest version - SmartPLS 3.3.2 학생용 버전은 평생 무료이며, 약간의 사용상 제약이 존재한다. II. SmartPLS 관련 자료 교제 추천 원서 - A Primer on Partial Least Squares Structural Equation Modeling(PLS-SEM) (2013) 번역서 - PLS 구조모델의 이해 (2014) 국내저서 - 석박사학위 및 학술논문 작성 중심의 SmartPLS 3.