I. 개요 NLP(Natural Language Processing): 기계가 인간의 언어를 이해하고 해석하는 데 중점 활용예제: 기계 번역, 챗봇, 질의응답 시스템 (딥러닝) Text Analysis: 비정형 텍스트에서 의미 있는 정보를 추출하는 것에 중점 활용예제: 비즈니스 인텔리전스, 예측분석 (머신러닝) 텍스트 분석의 예 텍스트 분류: 문서가 특정 분류 또는 카테고리에 속하는 것을 예측하는 기법 감성 분석: 텍스트에서 나타나는 감정/판단/믿음/의견 등의 주관적인 요소 분석하는 기법 텍스트 요약: 텍스트 내에서의 중요한 주제나 중심 사상 추출(Topic Modeling) 텍스트 군집화(Clustering)와 유사도 측정: 비슷한 유형의 문서에 대해 군집화를 수행하는 기법.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 개요 List는 파이썬 데이터 타입의 기본 자료형이다. Pandas 데이터 분석을 위한 기본적인 자료형이다. List에서 Pandas로 변환하는 작업의 다양한 방법을 활용해본다. 방법 1. 기초 List를 생성한 후, 데이터프레임으로 변환한다. 여기에서는 column과 index값을 확인해본다. import pandas as pd lst = ["Korea", "Japan", "USA", "China", "Russia"] data = pd.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 Seaborn 개요 Matplotlib 라이브러리가 Python에서 제공하는 기본적인 시각화 도구이지만, 기본객체는 리스트 형태를 따르기 때문에, 엑셀 데이터, 즉 데이터 프레임에 익숙한 사용자들에게는 조금 불친절한 것은 아쉬움이 있습니다. 실제, 입문자를 대상으로 강의를 할 때에도 Seaborn부터 알려드리는데, 그 이유는 Pandas를 활용한 데이터 가공 직후에 보다 쉽게 연동할 수 있도록 Seaborn이 개발되었기 때문입니다.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 분포에 대한 가정을 만족 못할 시의 문제점 1종 오류의 값이 커지거나, 분석 결과 자체에 대한 신뢰성이 떨어짐 1종 오류 및 2종 오류의 차이 모수 통계 분석 적용 못할 시, 비모수 통계 분석 활용 (1) 언제 적용할까?
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 Seaborn 개요 Matplotlib 라이브러리가 Python에서 제공하는 기본적인 시각화 도구이지만, 기본객체는 리스트 형태를 따르기 때문에, 엑셀 데이터, 즉 데이터 프레임에 익숙한 사용자들에게는 조금 불친절한 것은 아쉬움이 있습니다. 실제, 입문자를 대상으로 강의를 할 때에도 Seaborn부터 알려드리는데, 그 이유는 Pandas를 활용한 데이터 가공 직후에 보다 쉽게 연동할 수 있도록 Seaborn이 개발되었기 때문입니다.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 Seaborn 개요 Matplotlib 라이브러리가 Python에서 제공하는 기본적인 시각화 도구이지만, 기본객체는 리스트 형태를 따르기 때문에, 엑셀 데이터, 즉 데이터 프레임에 익숙한 사용자들에게는 조금 불친절한 것은 아쉬움이 있습니다. 실제, 입문자를 대상으로 강의를 할 때에도 Seaborn부터 알려드리는데, 그 이유는 Pandas를 활용한 데이터 가공 직후에 보다 쉽게 연동할 수 있도록 Seaborn이 개발되었기 때문입니다.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 Seaborn 개요 Matplotlib 라이브러리가 Python에서 제공하는 기본적인 시각화 도구이지만, 기본객체는 리스트 형태를 따르기 때문에, 엑셀 데이터, 즉 데이터 프레임에 익숙한 사용자들에게는 조금 불친절한 것은 아쉬움이 있습니다. 실제, 입문자를 대상으로 강의를 할 때에도 Seaborn부터 알려드리는데, 그 이유는 Pandas를 활용한 데이터 가공 직후에 보다 쉽게 연동할 수 있도록 Seaborn이 개발되었기 때문입니다.
개요 본 수업을 듣는 수강생들을 위해 간단한 튜토리얼을 만들었다. 대회는 다음과 같다. 싸이트: 한국데이터거래소 /img/r/competition/blog_kdx_guideline_files/img 1단계 패키지 불러오기 데이터 가공 및 시각화 위주의 패키지를 불러온다. library(tidyverse) # 데이터 가공 및 시각화 library(readxl) # 엑셀파일 불러오기 패키지 2단계 데이터 불러오기 데이터가 많아서 순차적으로 진행하도록 한다. 각 데이터에 대한 설명은활용데이터설명(PDF)을 참조한다. 먼저 제 개발환경은 아래와 같다. Note: 윈도우와 Mac은 다를 수 있음을 명심하자. sessionInfo() ## R version 4.0.2 (2020-06-22) ## Platform: x86_64-apple-darwin17.0 (64-bit) ## Running under: macOS Catalina 10.
개요 본 Repo는 강림직업전문학교 수강생을 위해 예시로 작성한 Repo입니다. 본 Repo에서는 R을 활용한 데이터 과학 발표자료를 공유하기 위해 만들어졌습니다. Git & Github 우선 Git을 설치합니다.
싸이트: https://git-scm.com/ 설정은 모두 기본 값으로 해주시기 바랍니다. Terimnal 창에서 git을 실행하여 정상적으로 설치되었는지 유무를 확인합니다.
그 다음은 Github에 회원가입을 합니다
저장소를 만드는 과정은 아래 싸이트를 참조바랍니다. 싸이트: https://goddaehee.tistory.com/221 이제 RStudio에서 프로젝트를 클릭한 후 아래 화면에서 Version Control을 클릭합니다.
그 다음은 github에서 주소를 클릭합니다. 복사한 주소를 아래그림과 같이 주소를 붙여 넣습니다.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 히트맵 그래프 히트 맵(heat map)은 열을 뜻하는 히트(heat)와 지도를 뜻하는 맵(map)을 결합시킨 단어로, 다양한 강도로 다양한 색상으로 데이터 범위를 시각화하는 데 사용된다. 여기서는 상관 행렬을 열 지도로 표시하는 예를 들 수 있다. 상관 행렬의 요소는 두 변수 사이의 선형 관계의 강도를 나타내며, 행렬에는 주어진 데이터에 포함된 속성의 모든 조합에 대한 그러한 값이 포함되어 있다.