1. 구글 클라우드 설정 본격적인 빅쿼리 실습에 앞서서, R과 연동하는 예제를 준비하였다. 빅쿼리 시작에 앞서서 선행적으로 클라우드 사용을 해야 한다.
만약 GCP 프로젝트가 없다면, 계정을 연동한다. Go to Cloud Resource Manager 그리고, 비용결제를 위한 카드를 등록한다. Enable billing 마지막으로 BigQuery API를 사용해야 하기 때문에 빅쿼리 API 사용허가를 내준다.Enable BigQuery 위 API를 이용하지 않으면 Python 또는 R과 연동해서 사용할 수는 없다. 자주 쓰는것이 아니라면 비용은 거의 발생하지 않으니 염려하지 않아도 된다. 비용관리에 대한 자세한 내용은 BigQuery 권장사항: 비용 관리에서 확인하기를 바란다.
공지 본 Tutorial은 교재 시작하세요 텐서플로 2.0 프로그래밍의 강사에게 국비교육 강의를 듣는 사람들에게 자료 제공을 목적으로 제작하였습니다.
강사의 주관적인 판단으로 압축해서 자료를 정리하였기 때문에, 자세하게 공부를 하고 싶은 반드시 교재를 구매하실 것을 권해드립니다.
본 교재 외에 강사가 추가한 내용에 대한 Reference를 확인하셔서, 추가적으로 학습하시는 것을 권유드립니다. Tutorial 이전 강의가 궁금하신 분들은 아래에서 선택하여 추가 학습 하시기를 바랍니다.
Google Colab Tensorflow 2.0 Installation Tensorflow 2.0 Tutorial ch3.3.1 - 난수 생성 및 시그모이드 함수 Tensorflow 2.
I. Process Mining Intro 모든 비즈니스는 프로세스와 연관이 깊다. 이러한 데이터를 통상적으로 event라고 부르며, 다루는 데이터는 log 데이터와 연관이 깊다. 프로세스 마이닝(Process Mining)은 데이터의 추출, 프로세싱, 그리고 분석의 순으로 진행한다.
데이터 추출 (Extraction): Raw Data를 Event Data로 변환시킨다. 프로세싱 (Processing): 데이터 가공과 비슷하며, 보통 Aggregation, Filtering, Enrichment의 용어가 등장한다. 분석 (Analysis): Performance, Control-Flow 등과 연관된 분석이 진행된다. 우선 빠르게 시각화부터 진행해보자.
library(bupaR) library(httr) library(processmapR) library(edeaR) url <- 'https://github.com/chloevan/datasets/blob/master/log/log_eat_patterns.RDS?raw=true' patterns <- readRDS(url(url)) trace_explorer(patients, coverage=1) 위 그래프에 대한 해석은 나중에 하더라도, 위 데이터를 보면, Rgst아 TraA는 공통으로 존재하고, 경로에 따라서 X-Ray, Blood Test에 나뉘는 걸 봐서는 환자의 경로에 관한 데이터임을 알 수 있다.
공지 본 Tutorial은 교재 시작하세요 텐서플로 2.0 프로그래밍의 강사에게 국비교육 강의를 듣는 사람들에게 자료 제공을 목적으로 제작하였습니다.
강사의 주관적인 판단으로 압축해서 자료를 정리하였기 때문에, 자세하게 공부를 하고 싶은 반드시 교재를 구매하실 것을 권해드립니다.
본 교재 외에 강사가 추가한 내용에 대한 Reference를 확인하셔서, 추가적으로 학습하시는 것을 권유드립니다. Tutorial 이전 강의가 궁금하신 분들은 아래에서 선택하여 추가 학습 하시기를 바랍니다.
Google Colab Tensorflow 2.0 Installation Tensorflow 2.0 Tutorial ch3.3.1 - 난수 생성 및 시그모이드 함수 Tensorflow 2.
1. 구글 클라우드 설정 본격적인 빅쿼리 실습에 앞서서, Python과 연동하는 예제를 준비하였다. 빅쿼리 시작에 앞서서 선행적으로 클라우드 사용을 해야 한다.
만약 GCP 프로젝트가 없다면, 계정을 연동한다. Go to Cloud Resource Manager 그리고, 비용결제를 위한 카드를 등록한다. Enable billing 마지막으로 BigQuery API를 사용해야 하기 때문에 빅쿼리 API 사용허가를 내준다.Enable BigQuery 위 API를 이용하지 않으면 Python 또는 R과 연동해서 사용할 수는 없다. 자주 쓰는것이 아니라면 비용은 거의 발생하지 않으니 염려하지 않아도 된다. 비용관리에 대한 자세한 내용은 BigQuery 권장사항: 비용 관리에서 확인하기를 바란다.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다.
도움이 되었다면 Github에 Star를 눌러주세요.
공지 본 Tutorial은 교재 시작하세요 텐서플로 2.0 프로그래밍의 강사에게 국비교육 강의를 듣는 사람들에게 자료 제공을 목적으로 제작하였습니다.
강사의 주관적인 판단으로 압축해서 자료를 정리하였기 때문에, 자세하게 공부를 하고 싶은 반드시 교재를 구매하실 것을 권해드립니다.
본 교재 외에 강사가 추가한 내용에 대한 Reference를 확인하셔서, 추가적으로 학습하시는 것을 권유드립니다. Tutorial 이전 강의가 궁금하신 분들은 아래에서 선택하여 추가 학습 하시기를 바랍니다.
Google Colab Tensorflow 2.0 Installation Tensorflow 2.0 Tutorial ch3.3.1 - 난수 생성 및 시그모이드 함수 Tensorflow 2.
Intro A picture is worth a thousand words — English Language Adage The simple graph has brought more information to the data analyst’s mind than any other device. — John Tukey
한장의 그림이 수천단어보다 가치가 있다는 영어속담과, 명료한 시각화가 데이터분석가에게 다른 어떤 도구보다 더 많은 정보를 제공한다는 유명한 데이터 과학자의 조언. 핵심은 시각화이다.
본 장에서는 ggplot2 패키지를 활용한 시각화를 먼저 보여줄 것이다. 먼저 간단하게 ggplot2 패키지에 소개하자면 Grammar of Graphics1의 철학을 담아서 R 생태계에서 유명한 학자 중, Hadley Wickham에 의해 주도적으로 개발되었다.
I. Get Started 일단 시작해보자. https://console.cloud.google.com/bigquery
뉴욕주의 자전거 렌탈이 비가 올때와 그렇지 않을 때 수치를 비교하고자 않다. 어떻게 해야할까? 일단, 필요한 데이터는 두가지가 될 것이다. 첫번째는 자전거 렌탈 데이터가 필요하고, 두번째는 뉴욕주의 날씨와 관련된 데이터이다. 두개의 데이터를 조인(join)한 후 수치를 구해야 할 것이다.
위 화면에서 아래 소스코드를 입력한다.
WITH bicycle_rentals AS ( SELECT COUNT(starttime) as num_trips, EXTRACT(DATE from starttime) as trip_date FROM `bigquery-public-data.new_york_citibike.citibike_trips` GROUP BY trip_date ), rainy_days AS ( SELECT date, (MAX(prcp) > 5) AS rainy FROM ( SELECT wx.
공지 이번에 준비한 튜토리얼은 제 강의를 듣는 과거-현재-미래 수강생분들을 위해 준비한 자료이다. 많은 도움이 되기를 바란다
이번에 준비한 Tutorial 코로나 세계현황을 Shiny Dashboard로 만들어 가는 과정을 담았다.
I. Shiny Tutorial 소개 처음 shiny를 접하거나 shiny의 전체 튜토리얼이 궁금한 사람들을 위해 이전 글을 소개한다.
shiny tutorial 01 - get started shiny tutorial 02 - Shiny Structure shiny tutorial 03 - HTML content shiny tutorial 04 - Shiny Layouts shiny tutorial 05 - Sharing Apps shiny tutorial 06 - shinydashboard shiny tutorial 07 - flexdashboard shiny tutorial 08 - HTML, CSS 적용 II.