Pythons

Plotly 그래프 - 이미지 내보내기

개요 Plotly 그래프를 다양한 방법으로 내보내는 코드를 작성해본다. 본 블로그에서는 HTML, PNG 두가지 형태로 내보내는 방법을 숙지한다. HTML로 내보내기 plotly figures는 HTML 및 자바스크립트로 구성되어 있다. 소스코드는 아래와 같다. fig.write_html('html_plot.html', config={'toImageButtonOptions':{'format': 'svg'}}) image로 내보내기 이미지로 내보내기 위해서는 아래와 같이 소스코드를 작성한다. fig.write_image('path/to/image_file.svg',height=600, width=850) 그런데, 실행 시, 다음과 에러가 나올 경우 아래와 같이 라이브러리를 설치한다. --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-11-691564193a43> in <module> ----> 1 fig.write_image('img/tutorial.png', height = 600, width = 850) /Library/Frameworks/Python.

Plotly 그래프 - Figure Object 이해하기

Figure Object Figure Object는 크게 두가지로 구성(Attribute)이 되어 있다. data : 여기에서는 그래프와 관련된 각종 정보가 담긴 데이터를 의미한다. 예를 들면, 산점도를 그린다면, X와 Y값의 정보를 확인할 수 있다. 그래프의 색상도 정의할 수 있다. layout : data외의 모든 것은 layout에 속한다. 기본적으로 layout은 그래프의 Styling 요소들이 들어 있다. 예를 들면, X축, Y축의 제목, 색상 등을 변경하고자 할 때는 layout에 접근해야 한다. 간단하게 Figure Object를 정의해본다. import plotly.graph_objects as go fig = go.

Plotly 그래프 시작하기 - 필수 사전 준비

개요 Plotly 그래프의 기본 생태계를 익히도록 한다. Plotly 그래프를 작성하도록 한다. 라이브러리 불러오기 본 코드는 모두 Local 가상환경을 설치한 후, Jupyter Lab에서 작성했다. 해당 설치 과정은 본 블로그에서는 생략한다. 참조 : https://dojang.io/mod/page/view.php?id=2470 현재 plotly 버전은 다음과 같다. import plotly print(plotly.__version__) 5.1.0 로컬 환경에서 Jupyter notebook에서 plotly 그래프가 간혹 나타나지 않는 경우가 있다. 그런 경우, 아래와 같이 추가로 설치를 진행한다. jupyter labextension install jupyterlab-plotly 설치가 완료되었다면, 아래와 같은 코드를 추가로 실행한다. import plotly plotly.

Flask Web Resume Using Templates

개요 Flask 웹개발을 통해 간단한 Resume를 작성해본다. 가상환경 프로젝트 폴더에 가상환경을 설치한다. virtualenv venv created virtual environment CPython3.9.12.final.0-64 in 5343ms creator CPython3Windows(dest=C:\Users\human\Desktop\flask-resume-evan-examples\venv, clear=False, no_vcs_ignore=False, global=False) seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy, app_data_dir=C:\Users\human\AppData\Local\pypa\virtualenv) added seed packages: pip==22.2.2, setuptools==63.2.0, wheel==0.37.1 activators BashActivator,BatchActivator,FishActivator,NushellActivator,PowerShellActivator,PythonActivator 라이브러리 설치 가상환경에 접속 후, Flask 라이브러리를 설치한다. pip install Flask [app.py](http://app.py) 에 다음과 같이 작성한다. from flask import Flask, render_template app = Flask(__name__) @app.route('/') def index(): first_name = 'Evan' return render_template('index.

Dash App Using Flask Factory Pattern and Blueprint - 2

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 개요 기존 Flask-Dash-Heroku 연동 예제를 업그레이드 한다. Flask Factory Application의 기본 개념 및 Blueprint의 기본 개념을 이해한다. Dash App을 Flask Factory Application에 맞추어 가공 한다. 리뷰 기존 필자가 작성해두었던 Flask-Dash-Heroku App을 리뷰한다. 참조 : Flask-Dash-Heroku 연동 참조 : Dash App Using Flask Factory Pattern and Blueprint - 1 미리보기 다음과 같이 메뉴가 있도록 코드를 작성할 예정이다.

Dash App Using Flask Factory Pattern and Blueprint - 1

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 개요 기존 Flask-Dash-Heroku 연동 예제를 업그레이드 한다. Flask Factory Application의 기본 개념 및 Blueprint의 기본 개념을 이해한다. 리뷰 기존 필자가 작성해두었던 Flask-Dash-Heroku App을 리뷰한다. 참조 : Flask-Dash-Heroku 연동 미리보기 다음과 같이 메뉴가 있도록 코드를 작성할 예정이다.

Flask-Dash-Heroku 연동

개요 Flask 및 Dash를 활용하여 간단한 대시보드를 생성할 수 있다. 기존 구현한 대시보드를 Heroku에 배포할 수 있다. 사전준비 파이썬 가상환경 설치 및 기존 라이브러리에 대한 이해가 어느정도 있음을 가정한 상태에서 본 블로그를 작성했음을 유의한다. Heroku 회원가입 및 로그인이 되어 있어야 한다. Step 1. Github Repo생성 Github Repo 생성 시, 중복되지 않을 법한 이름으로 생성 필자 Repo : flask-heroku-dash-evan1234 해당 Repo를 로컬로 가져온다. git clone https://github.com/your_name/your_unique_repo.git Step 2. 가상환경 설치 및 주요 라이브러리 설치 먼저 가상환경을 설치한다.

Flask Heroku Pandas Postgres 튜토리얼

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 개요 Flask 기본적인 작동 원리를 배운다. Postgres와 SQLAlchemy를 활용한다. Heroku에 배포를 진행한다. 사전준비 Github에 각 개인에게 맞는 Github Repo를 생성한다. 주의 : 반드시 Unique하게 작성해야 한다. 가상환경 설정을 진행한다. PostgreSQL DB 설정은 다음을 참조한다. Postgre SQL Installation on Windows 10 virtualenv venv 주요 라이브러리를 설치한다.

Scikit-Learn ML Model with Java

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 개요 scikit-learn 모델을 JAVA에서 구동 시켜야 한다. 크게 3가지 방법론이 존재한다.(원문 참조 : Moving from Python to Java to deploy your machine learning model to production embed : Java 코드 내에서 직접 Python 코드 구현 방법.

MLFlow with Scikit-Learn

개요 Scikit-Learn 모델을 만든 후, MLFlow로 모델을 배포한다. 머신러닝 코드에 대한 설명은 생략한다. 가상환경 설정에 관한 내용도 생략한다. 라이브러리 불러오기 기존 코드에서 mlflow 라이브러리만 추가한다. %matplotlib inline import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import sklearn import seaborn as sns import mlflow import mlflow.sklearn from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split, KFold from sklearn.preprocessing import StandardScaler from sklearn.metrics import roc_auc_score, plot_roc_curve, confusion_matrix print(f"numpy version {np.