Python

Streamlit ML Multiclass Classification Model Prediction Sample (feat. Pipeline)

개요 Kaggle 데이터셋을 활용하여 Streamlit ML Multiclass Classification Model을 배포한다. 각 코드에 대한 자세한 설명은 여기에서는 생략한다. 데이터 수집 이번에 활용하는 캐글 데이터 수집은 아래 대회에서 train 데이터만 가져왔다. Multi-Class Prediction of Obesity Risk : https://www.kaggle.com/competitions/playground-series-s4e2 Dataset Description은 아래에서 확인하도록 한다. 링크 : https://www.kaggle.com/competitions/playground-series-s4e2/data train.csv 파일만 다운로드 받았다. 모델 개발 다음 코드는 모델을 개발하는 코드이다. 주어진 데이터셋에서 종속변수 NObeyesdad을 예측하는 모델을 구성했다. 파일명 : model.py import pandas as pd from sklearn.

Streamlit ML Model Prediction Sample (feat. Pipeline)

강의소개 인프런에서 Streamlit 관련 강의를 진행하고 있습니다. 인프런 : https://inf.run/YPniH 개요 tips 데이터셋을 활용하여 Streamlit ML Model을 배포한다. 각 코드에 대한 자세한 설명은 여기에서는 생략한다. 모델 개발 다음 코드는 모델을 개발하는 코드이다. 주어진 데이터셋에서 tip을 예측하는 모델을 구성했다. 파일명 : model.py import streamlit as st import pandas as pd import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.

openAI API, Text & Image 생성 예제

강의소개 인프런에서 Streamlit 관련 강의를 진행하고 있습니다. 인프런 : https://inf.run/YPniH 소스 참조 후루카와 히데카즈 저/트랜스메이트 역. (2023). GPT-4, ChatGPT, 라마인덱스, 랭체인을 활용한 인공지능 프로그래밍 한권으로 끝내는 OpenAI API 기반 LLM 애플리케이션 구축. 위키북스, 판매처 : https://www.yes24.com/Product/Goods/122533123 라이브러리 설치 openai 패키지를 설치한다. !pip install openai Collecting openai Obtaining dependency information for openai from https://files.pythonhosted.org/packages/26/a1/75474477af2a1dae3a25f80b72bbaf20e8296191ece7fff2f67984206f33/openai-1.12.0-py3-none-any.whl.metadata Downloading openai-1.12.0-py3-none-any.whl.metadata (18 kB) . . . [notice] A new release of pip is available: 23.2.1 -> 24.

st-pages 라이브러리 소개

강의소개 인프런에서 Streamlit 관련 강의를 진행하고 있습니다. 인프런 : https://inf.run/YPniH 개요 Streamlit 생태계에 기반한 Components를 살펴본다. st-pages 라이브러리를 확인한다. Components Components는 Streamlit Community와 Creators가 직접 개발한 Streamlit 관련 라이브러리를 말한다. 참고 : https://streamlit.io/components 여기에는 다양한 라이브러리들이 존재한다. 활용법 주의 이러한 라이브러리들을 활용할 때는 Github의 최근 개발 이력을 살펴볼 필요가 있다. 예: spacy-streamlit, https://github.com/explosion/spacy-streamlit 확인해야 하는 것은 최근 Releases 날짜다. Release 날짜가 최근 날짜에서 멀면 멀수록 관리가 안되고 있다는 것이며, 이 부분은 향후 프로젝트 유지보수할 때 어려움을 겪을 수도 있다.

OpenAI API 인증키 발급

강의소개 인프런에서 Streamlit 관련 강의를 진행하고 있습니다. 인프런 : https://inf.run/YPniH 개요 OpenAI API 인증키 발급 OpenAI 회원가입을 이미 한 것으로 전제 인증키 발급 다음 사이트에서 로그인을 한다. https://openai.com/blog/openai-api API를 선택한다. 왼쪽 메뉴에서 API Keys를 선택한다. API Key 획득을 위해 Create New Secret Key 버튼을 클릭한다. 인증키 확인 후, 별도로 저장해야 함

creating multipages in streamlit web using official docs

강의소개 인프런에서 Streamlit 관련 강의를 진행하고 있습니다. 인프런 : https://inf.run/YPniH 개요 streamli을 활용한 멀티페이지 개념 및 구현에 대한 내용을 다룬다. 공식문서 참고 : Create a multipage app : https://docs.streamlit.io/get-started/tutorials/create-a-multipage-app Multipage apps : https://docs.streamlit.io/library/advanced-features/multipage-apps Streamlit에서 multipage란 무엇인가? 앱의 크기가 커질수록 다중 페이지 구성은 관리와 탐색의 용이성을 제공함. Streamlit은 이를 쉽게 가능하게 하며, 클릭 한 번으로 해당 페이지에 빠르게 이동할 수 있다. 폴더 및 파일 구조 Home.py 파일을 만든 후에는 엔트리포인트 파일과 관련된 pages/about.

django tutorial - pyburger 3

공지 멀티캠퍼스 수업 보조자료로 활용하기 위해 아래 교재 내용을 발췌하였음을 알립니다. 판매처 : https://product.kyobobook.co.kr/detail/S000201056504 Github에서 프로젝트 내려받기 다음 경로에서 프로젝트를 내려 받는다. 사이트 : https://github.com/dschloe/pyburger Download Zip을 선택하여 프로젝트를 내려 받는다. 다음 명령어를 실행하여 Local의 적당한 곳에서 다운로드 받는다. 폴더 수정 .DS_Store 파일은 삭제한다 폴더명은 pyburger로 변경한다. VS Code로 폴더 열기 아래와 같이 VS Code로 pyburger 폴더를 연다. 프로젝트 설정 가상환경을 설정하고 django를 설치한다. $ virtualenv venv $ source venv/Scripts/activate (venv) $ pip install 'django<5' 첫번째 확인사항 runserver를 실행하여 정상적으로 작동하는지 확인한다.

django tutorial - pyburger 2

공지 멀티캠퍼스 수업 보조자료로 활용하기 위해 아래 교재 내용을 발췌하였음을 알립니다. 판매처 : https://product.kyobobook.co.kr/detail/S000201056504 별도의 app 추가 application을 생성하는 명령어를 활용하여 app을 생성한다. python manage.py startapp burgers 트리 구조는 다음과 같다. $ tree -L 2 . |-- burgers | |-- __init__.py | |-- admin.py | |-- apps.py | |-- migrations | |-- models.py | |-- tests.py | `-- views.py |-- config | |-- __init__.py | |-- __pycache__ | |-- asgi.py | |-- settings.

django tutorial - pyburger 1

Django Pyburger - 1, 맛보기 공지 멀티캠퍼스 수업 보조자료로 활용하기 위해 아래 교재 내용을 발췌하였음을 알립니다. 판매처 : https://product.kyobobook.co.kr/detail/S000201056504 Django 설치 터미널에서 django를 설치한다. pip install 'django<5' Django 버전 확인 터미널에서 Django의 버전을 확인한다. django-admin --version 4.2.9 Django 프로젝트 생성 다음 명령어를 실행하여 django 프로젝트를 생성한다. djang-admin은 터미널에서 실행할 수 있는 프로그램이며, django 프로젝트를 관리하는 여러 기능들을 가지고 있음 startproject는 django 프로젝트의 기반 구조를 만드는 기능 django-admin startproject config . 생성된 파일 목록을 확인한다.

kaggle 한글폰트 적용

개요 캐글에서 한글폰트를 적용하는 방법에 대해 알아본다. 가장 간편한 방법은 폰트를 업로드 한 뒤 업데이트 하는 방식이다. 폰트 확인 폰트는 아래 사이트에서 다운로드 받는다. 사이트 : https://hangeul.naver.com/font 여기에서 나눔글꼴을 다운로드 받았다. 폰트 압축풀기 다운로드 폰트를 압축 풀기 하면 매우 다양한 폰트가 확인이 된다. 여기에서 나눔스퀘어 > NanumFontSetup_TTF_SQUARE 파일에서 폰트 목록을 확인한다. 폰트 업로드 이제 현재 사용하는 캐글 노트북에 추가한다. 임의의 font 폴더명을 입력했다. Create 버튼을 클릭한다. 업로드 이후에 폴더에 폰트가 들어간 것을 확인한다.