개요 교차검증의 의미를 이해한다. 교차검증을 위한 간단한 실습을 진행한다. 교차검증이란 교차검증은 기본적으로 과적합을 예방하기 위한 방법론 중 하나이다. 교차검증을 쉽게 이해하는 방법은 수능시험을 보기 위해 수능과 비슷한 유형의 모의고사를 보는 것과 같다. (1) K폴드 교차검증 개요 데이터의 수가 적을 때 사용한다. 검증 데이터의 수도 적기 때문에 검증 성능의 신뢰도가 떨어진다. 이 때, K-폴드 방법을 사용한다. 그림을 보며 이해하자. 데이터의 편향을 방지하기 위한 것 데이터를 K개로 나누어 K-1개를 분할하고 나머지는 평가에 사용 모델의 검증 점수는 K개의 검증 점수 평균이 된다.
개요 사이킷런(scikit-learn)은 파이썬 머신러닝 라이브러리이다. 파이썬에서 나오는 최신 알고리즘들도 이제는 사이킷런에 통합하는 형태로 취하고 있다. 구글 코랩은 기본적으로 사이킷런까지 설치가 완료되기에 별도의 설치가 필요없는 장점이 있다. Note: 본 포스트는 머신러닝 자체를 처음 접하는 분들을 위한 것이기 때문에, 어느정도 경험이 있으신 분들은 필자의 다른 포스트를 읽어주시기를 바랍니다. 패키지 불러오기 패키지는 시간에 지남에 따라 계속 업그레이드가 되기 때문에 꼭 버전 체크를 하는 것을 권장한다. 필자가 글을 남겼을 때는 2020년 8월 16일에 작성했음을 기억하자.
개요 사이킷런(scikit-learn)은 파이썬 머신러닝 라이브러리이다. 파이썬에서 나오는 최신 알고리즘들도 이제는 사이킷런에 통합하는 형태로 취하고 있다. 구글 코랩은 기본적으로 사이킷런까지 설치가 완료되기에 별도의 설치가 필요없는 장점이 있다. Note: 본 포스트는 머신러닝 자체를 처음 접하는 분들을 위한 것이기 때문에, 어느정도 경험이 있으신 분들은 필자의 다른 포스트를 읽어주시기를 바랍니다. 패키지 불러오기 패키지는 시간에 지남에 따라 계속 업그레이드가 되기 때문에 꼭 버전 체크를 하는 것을 권장한다. 필자가 글을 남겼을 때는 2020년 8월 16일에 작성했음을 기억하자.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 Numpy ndarray 개요 넘파이 array()는 ndarray로 변환 가능 생성된 ndarray배열의 shape변수는 ndarray의 크기, 행과 열의 수를 튜플 형태로 가지고 있으며, 이를 통해 ndarray 배열의 차원까지 알 수 있음 (1) 배열이란? NumPy에서 배열은 동일한 타입의 값을 가짐 shape는 각 차원의 크기를 튜플로 표시한다.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 공지 본 포스트는 필자의 수업을 듣는 사람들을 위해 작성하였습니다. I. 구글 드라이브와 Colab과 연동 구글 드라이브와 Colab과 연동하면 보다 쉽게 데이터에 접근할 수 있다. 구글 인증만 하면 된다. # Google Drive와 마운트 from google.colab import drive ROOT = '/content/drive' drive.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 공지 본 자료는 강의 수업의 보충 자료로 사용되었습니다. 자세한 내용은 Reference를 확인하시기를 바랍니다. Setup File 외부 설정 파일이 필요하다. 참조: Mask R-CNN for Object Detection and Segmentation shell script에서 작성한다. %%shell # clone Mask_RCNN repo and install packages git clone https://github.
개요 Kaggle 대회인 `Titanic’대회를 통해 분류 모형을 만들어본다. 본 강의는 수업 자료의 일부로 작성되었다. I. 사전 준비작업 Kaggle API 설치 및 연동해서 GCP에 데이터를 적재하는 것까지 진행한다. (1) Kaggle API 설치 구글 코랩에서 API를 불러오려면 다음 소스코드를 실행한다. !pip install kaggle Requirement already satisfied: kaggle in /usr/local/lib/python3.6/dist-packages (1.5.6) Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from kaggle) (2.23.0) Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from kaggle) (1.24.3) Requirement already satisfied: python-slugify in /usr/local/lib/python3.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 공지 본 Tutorial은 교재 핸즈온 머신러닝 2판를 활용하여 본 강사로부터 국비교육 강의를 듣는 사람들에게 자료 제공을 목적으로 제작하였습니다..
강사의 주관적인 판단으로 압축해서 자료를 정리하였기 때문에, 자세하게 공부를 하고 싶은 분은 반드시 교재를 구매하실 것을 권해드립니다.
공지 본 포스트는 필자의 수업을 듣는 사람들을 위해 작성하였습니다. I. 구글 드라이브와 Colab과 연동 구글 드라이브와 Colab과 연동하면 보다 쉽게 데이터에 접근할 수 있다. 구글 인증만 하면 된다. # Google Drive와 마운트 from google.colab import drive ROOT = '/content/drive' drive.mount(ROOT) Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly Enter your authorization code: ·········· Mounted at /content/drive (1) 데이터 다운로드 제주 신용카드 데이터를 다운로드 받는다. (회원가입 필수) 웹사이트: 제주 신용카드 빅데이터 경진대회 (2) 구글 드라이브에 다운로드 받은 폴더를 올린다.
강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 공지 본 Tutorial은 교재 핸즈온 머신러닝 2판를 활용하여 본 강사로부터 국비교육 강의를 듣는 사람들에게 자료 제공을 목적으로 제작하였습니다.
강사의 주관적인 판단으로 압축해서 자료를 정리하였기 때문에, 자세하게 공부를 하고 싶은 분은 반드시 교재를 구매하실 것을 권해드립니다.