gtsummary

ch 13 - Reliability

Intro PLS-SEM의 분석과정에서 척도(측정변수와 잠재변수)의 신뢰도와 타당도를 확보하는 것은 매우 중요하며, 신뢰도와 타당도가 확보되지 않으면 모델 추정 결과가 의미가 없기 때문임 즉, 구조모델의 추정을 실행하려면 사전에 반드시 측정모델에 대한 평가과정을 통해 신뢰도와 타당도 확보 필요 I. 주요 개념 (1) 신뢰도 잠재변수의 측정에 있어서 얼마나 일관성이 있는가의 정도 의미 검사도구의 일관성을 말하며, 일관성이란 잠재변수를 여러 번에 걸쳐 측정했을 때 매번 같은 결과를 도출할 수 있는 정도. 내적 일관성 신뢰(Internal Consistency Reliability)로 평가 (2) 타당도 타당도의 기본 정의는 실제 측정하고자 하는 잠재변수를 정확하게 측정하고 있는 정도 PLS-SEM에서는 집중타당도(Convergent Validity)와 판별타당도(Discriminant Validity)를 사용한다.

ch 12 - Demographic of Respondent in R

Intro 지난 시간에 설문조사 전처리에 대해 배웠다면 이번에는 경영/사회과학 논문에서 필수적으로 기재해야 하는 표본의 특성을 간단한 프로그램으로 요약하는 것을 코딩한다. (1) 주요 패키지 이번 포스트부터 gt 패키지를 사용하려고 한다. gt: ggplot2와 같이 Table를 문법으로 컨트롤 할 수 있도록 구현된 패키지이다. kableExtra: HTML로 출력할 수 있도록 도와주는 패키지이다. library(readr) library(dplyr) library(gt) library(gtsummary) I. 데이터 가져오기 우선 데이터를 불러온다. data <- read_csv('data/thesis_mater.csv') %>% distinct() %>% # 중복데이터 제거 rename(Position = founder_employee, # 출력을 위한 변수명 정리 Age = age_of_respondent, Education = Education_Level) glimpse(data %>% select(Firm_Age:Business_Area)) 전체 34개의 변수 중에서, 문자열 관련 데이터만 추출하였다.