Pythons

Streamlit 라이브러리를 활용한 배포 예제

사전준비 배포를 하기 위해서는 필수로 진행해야 할 사전준비가 필요하다. Git & Github 설치 과정은 생략한다. Step 01 - Streamlit 회원가입 https://share.streamlit.io/signup 아래 이미지에서 Continue with Github 와 같이 회원가입을 진행한다. Set up your account를 작성한다. 작성이 끝나면 다음과 같은 화면이 나오면 정상적으로 등록이 된 것이다. Step 02 - Github 레포 설정 Gitub 레포를 설정한다. 이 때, 주의해야 할 것은 Public으로 설정을 해야한다. .gitignore 파일도 Setting 하는 것이 좋다. Step 03 - 주요 라이브러리 설치 다음 코드를 실행하여 배포를 위한 라이브러리를 설치한다.

Heroku를 활용한 카카오챗봇 배포 - DB조회편

읽기 전 공지 본 글은 2022년 11월 28일까지만 유효합니다. 무료 버전이 사라지기 때문에, 앞으로 어떻게 될지는 현재 글 쓰는 시점에서는 모릅니다. 이 부분에 주의해서 참고 하시기를 바랍니다. 강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 [비전공자 대환영] 캐글 데이터를 활용한 Optuna with MLFlow - 캐글다지기 머신러닝 하이퍼파라미터 튜닝 등을 배우고 싶다면 다음 강의를 참고하세요.

Heroku를 활용한 카카오챗봇 배포 - 응용편

읽기 전 공지 본 글은 2022년 11월 28일까지만 유효합니다. 무료 버전이 사라지기 때문에, 앞으로 어떻게 될지는 현재 글 쓰는 시점에서는 모릅니다. 이 부분에 주의해서 참고 하시기를 바랍니다. 강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 [비전공자 대환영] 캐글 데이터를 활용한 Optuna with MLFlow - 캐글다지기 머신러닝 하이퍼파라미터 튜닝 등을 배우고 싶다면 다음 강의를 참고하세요.

Heroku를 활용한 카카오챗봇 배포 - 인사말편

읽기 전 공지 본 글은 2022년 11월 28일까지만 유효합니다. 무료 버전이 사라지기 때문에, 앞으로 어떻게 될지는 현재 글 쓰는 시점에서는 모릅니다. 이 부분에 주의해서 참고 하시기를 바랍니다. 강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 [비전공자 대환영] 캐글 데이터를 활용한 Optuna with MLFlow - 캐글다지기 머신러닝 하이퍼파라미터 튜닝 등을 배우고 싶다면 다음 강의를 참고하세요.

Heroku를 활용한 배포 - DB 연결편

읽기 전 공지 본 글은 2022년 11월 28일까지만 유효합니다. 무료 버전이 사라지기 때문에, 앞으로 어떻게 될지는 현재 글 쓰는 시점에서는 모릅니다. 이 부분에 주의해서 참고 하시기를 바랍니다. 강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 [비전공자 대환영] 캐글 데이터를 활용한 Optuna with MLFlow - 캐글다지기 머신러닝 하이퍼파라미터 튜닝 등을 배우고 싶다면 다음 강의를 참고하세요.

Plotly 그래프 - 막대 그래프 색상 변경

개요 특정 컬럼의 색상을 변경하는 코드를 작성한다. 기본 그래프 작성 우선 아래와 같은 기본 그래프를 작성한다. import plotly.express as px tips = px.data.tips() tips_mean_day = tips.groupby("day").mean().reset_index() tips_mean_day.head() fig = px.bar(tips_mean_day, x = 'day', y = 'tip') fig.show() Sun 색상 변경 Sun 값의 막대 그래프의 색상을 변경하도록 한다. 먼저 marker.color를 활용하여 색상을 먼저 지정한 뒤, X축 라벨의 순서를 후에 재정렬한 것이다. fig.data[0].marker.color = ['#ff0000', '#ff0000', 'black', '#ff0000'] fig.layout.xaxis.categoryarray = ["Thur", "Fri", "Sat", "Sun"] fig.

Plotly 그래프 - 막대 그래프 X축 라벨 변경하기

개요 기존에 작성한 그래프를 목적에 맞게 수정 및 변경할 수 있다. Figure Object를 활용한다. 데이터 불러오기 및 가공 tips 데이터를 불러온 뒤, 데이터를 가공하여 평균 값을 구한다. import plotly.express as px tips = px.data.tips() tips_mean_day = tips.groupby("day").mean().reset_index() tips_mean_day.head() 막대 그래프 작성하기 기본 막대그래프를 작성한다. 그런데, X축의 값을 보면 요일별로 정리가 안된 것을 확인할 수 있다. 이 부분을 수정하도록 한다. fig = px.bar(tips_mean_day, x = 'day', y = 'tip') fig.show() 막대 그래프의 X 라벨 변경하기 우선 막대그래프의 순서를 변경하도록 한다.

Plotly 그래프 - Plotly Express

개요 High-Level API 형태인 Plotly Express에 대해 학습하도록 한다. Plotly Express는 간단하게 말하면 Pandas Dataframe과 직접적으로 연동이 가능하다. 보다 직관적으로 그래프를 시각화할 수 있기 때문에 초기 밑그림을 그릴 때는 Plotly Express로 작성하는 것이 좋다. 전체 설명 참고자료 : Plotly Express in Python Plotly Express 요약 Plotly Express Function은 graph_objects를 기반으로 작성되며, 그래프의 반환값도 plotly.graph_objects 형태이다. 공식 문서에는 약 30개 이상이 그래프 유형이 존재하는 것으로 알려지고 있다. 참조 : plotly.express: high-level interface for data visualization Plotly Express 그래프 종류 Plotly Express currently includes the following functions:

Plotly 그래프 - 테마 변경하기

개요 plotly 그래프의 테마를 변경하는 방법에 대해 알아본다. 그래프 테마의 종류 확인하기 우선 기본 그래프를 확인한다. import plotly.graph_objects as go weekly_sales = dict({ "data": [{ "type": "bar", "x": ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"], "y": [28, 27, 25, 31, 32, 35, 36] }], "layout" : {"title": {"text": "Sales of the week", "x": 0.5, "font": {"color": "red", "size": 15}}} }) fig = go.Figure(weekly_sales) fig.show() 그래프 테마를 변경하기 위해 우선 종류를 확인해야 한다.

Plotly 그래프 - 이미지 내보내기

개요 Plotly 그래프를 다양한 방법으로 내보내는 코드를 작성해본다. 본 블로그에서는 HTML, PNG 두가지 형태로 내보내는 방법을 숙지한다. HTML로 내보내기 plotly figures는 HTML 및 자바스크립트로 구성되어 있다. 소스코드는 아래와 같다. fig.write_html('html_plot.html', config={'toImageButtonOptions':{'format': 'svg'}}) image로 내보내기 이미지로 내보내기 위해서는 아래와 같이 소스코드를 작성한다. fig.write_image('path/to/image_file.svg',height=600, width=850) 그런데, 실행 시, 다음과 에러가 나올 경우 아래와 같이 라이브러리를 설치한다. --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-11-691564193a43> in <module> ----> 1 fig.write_image('img/tutorial.png', height = 600, width = 850) /Library/Frameworks/Python.