Pythons

How to create my own function

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 I. 개요 나만의 함수를 작성해 본다. 실행가능한 함수를 만들어 본다. II. 기존 내장 함수 함수는 특정 기능을 수행하는 코드를 의미한다. 함수는 Sum(), Len()을 의미한다. x = [1,2,3,4,5] print(sum(x)) print(len(x)) 5 III 사용자 정의 함수 예제 이제 사용자 정의 함수를 사용하자.

머신러닝 데이터 전처리 1 - 결측치 처리

개요 EDA를 진행할 때, 결측치가 있는 데이터를 시각화 하여 결측치 유무를 파악하였다. 참조: EDA with Housing Price Prediction - Handling Missing Values 이번 포스트에서는 결측치를 처리하는 코드를 작성할 것이다. I. 구글 드라이브 연동 구글 코랩을 시작하면 언제든지 가장 먼저 해야 하는 것은 드라이브 연동이다. from google.colab import drive # 패키지 불러오기 from os.path import join ROOT = "/content/drive" # 드라이브 기본 경로 print(ROOT) # print content of ROOT (Optional) drive.mount(ROOT) # 드라이브 기본 경로 Mount MY_GOOGLE_DRIVE_PATH = 'My Drive/Colab Notebooks/inflearn_kaggle/' # 프로젝트 경로 PROJECT_PATH = join(ROOT, MY_GOOGLE_DRIVE_PATH) # 프로젝트 경로 print(PROJECT_PATH) /content/drive Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.

데이콘 대회 참여 - 09 스태킹 알고리즘

공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다. 사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully installed confuse-1.3.0 htmlmin-0.1.12 imagehash-4.1.0 pandas-profiling-2.8.0 phik-0.10.0 tangled-up-in-unicode-0.0.6 tqdm-4.47.0 visions-0.4.4 I. GBM, XGBoost, Lightgbm의 개요 및 실습 부스팅 알고리즘은 여러 개의 약한 학습기(Weak Learner)를 순차적으로 학습-예측하면서 잘못 예측한 데이터에 가중치 부여를 통해 오류 개선하며 학습하는 방식.

데이콘 대회 참여 - 08 세개의 모델

공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다. 사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Using cached https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully built pandas-profiling I. 빅쿼리 연동 지난 시간에 데이콘에서 내려받은 데이터를 빅쿼리에 넣는 작업을 진행하였다.

Pandas Data Handling 1편

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 I. Kaggle에서 타이타닉 데이터 가져오기 캐글 데이터 가져오는 예제는 본 Kaggle with Google Colab에서 참고하기를 바란다. 먼저 kaggle 패키지를 설치한다. !pip install kaggle Requirement already satisfied: kaggle in /usr/local/lib/python3.6/dist-packages (1.5.6) Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.

데이콘 대회 참여 - 07 두개의 모델

공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다. 사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Using cached https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully built pandas-profiling I. 빅쿼리 연동 지난 시간에 데이콘에서 내려받은 데이터를 빅쿼리에 넣는 작업을 진행하였다.

데이콘 대회 참여 - 06 교차검증과 파라미터 튜닝

공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다. 사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Using cached https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully built pandas-profiling I. 빅쿼리 연동 지난 시간에 데이콘에서 내려받은 데이터를 빅쿼리에 넣는 작업을 진행하였다.

데이콘 대회 참여 - 05 GBM 파라미터 튜닝

공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다. 사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Using cached https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully built pandas-profiling I. 빅쿼리 연동 지난 시간에 데이콘에서 내려받은 데이터를 빅쿼리에 넣는 작업을 진행하였다.

데이콘 대회 참여 - 04 데이터셋 분리

공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다. 사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Using cached https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully built pandas-profiling I. 빅쿼리 연동 지난 시간에 데이콘에서 내려받은 데이터를 빅쿼리에 넣는 작업을 진행하였다.

데이콘 대회 참여 - 03 데이터 샘플링과 종속변수 로그변환

공지 제 수업을 듣는 사람들이 계속적으로 실습할 수 있도록 강의 파일을 만들었습니다. 늘 도움이 되기를 바라며. 참고했던 교재 및 Reference는 꼭 확인하셔서 교재 구매 또는 관련 Reference를 확인하시기를 바랍니다. 사전작업 먼저 구글 코랩 내에서 pandas_profiling을 확인하기 위해 master.zip을 설치한다. ref. https://github.com/pandas-profiling/pandas-profiling 설치가 끝나면 구글코랩에서 런타임 다시 시작 한다. !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Collecting https://github.com/pandas-profiling/pandas-profiling/archive/master.zip Using cached https://github.com/pandas-profiling/pandas-profiling/archive/master.zip . . . Successfully built pandas-profiling I. 빅쿼리 연동 지난 시간에 데이콘에서 내려받은 데이터를 빅쿼리에 넣는 작업을 진행하였다.