데이터 전처리

Pandas With Excel

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 I. Overview 이번 포스트는 기존의 엑셀 사용자를 위해 준비했다. 엑셀에 익숙한 사람들에게 파이썬을 분석 용도로 사용하고자 하는 분들에게는 작은 도움이 되기를 바란다. II. 데이터 입출력 판다스는 다양한 형태의 외부 파일을 읽을 수 있다. CSV, MS Excel, SQL, HDF5 Format과 같은 파일 포맷을 읽을 수 있다.

Pandas Lambda Apply 함수 활용

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 I. Iterrows, Itertuples 복습 이번 포스팅은 For-loop의 대안에 관한 함수 apply에 관한 내용이다. 본 포스트를 보고 학습하시기 전에 Pandas Iterrows 함수 활용과 Pandas Itertuples 함수 활용에서 학습 하기를 바란다. 지난시간과 마찬가지로 데이터는 동일한 것을 쓰도록 한다.

Pandas Itertuples 함수 활용

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 I. Iterrows 이번 포스팅은 Iterrows()의 확장개념입니다. 본 포스트를 보고 학습하시기 전에 Pandas Iterrows 함수 활용에서 학습 하기를 바란다. II. Itertuples의 개념 itertuples()는 기본적으로 iterrows() 함수보다는 빠르다. import pandas as pd import io import requests import pprint url = 'https://raw.

Pandas Iterrows 함수 활용

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 I. Iterrows의 개념 데이터 전처리를 진행할 때, 데이터프레임에서 행에 반복적으로 접근을 하면서 값을 추출하거나 또는 그 값을 조작하는 일이 발생한다. 예를 들면, 특정 컬럼 A의 값에서 대문자 A를 찾아내 소문자 b로 변경한다고 가정해보자. 이런 경우에는 언제나 For-loop를 통한 반복문 코드 작성을 만들어야 한다.

Machine Learning Tutorial 02 - Regression (2)

I. 지도 학습 VS 비지도 학습 머신러닝은 크게 두 가지 유형으로 분류한다. 우선 아래 표를 보자. 구분 지도학습(Supervised Learning) 비지도 학습(Unsupervised Learning) 알고리즘(분석모형) 회귀분석분류모형 군집분석 특징 정답을 알고 있는 상태에서 학습모형 평가 방법이 다양한 편 정답이 없는 상태에서 서로 비슷한 데이터를 찾아서 그룹화모형 평가 방법이 제한적 지도학습(Supervised Learning)은 종속변수(Dependent Variable) 선정이 매우 중요하며. 종속변수 선정과 함께 데이터 분석도 같이 병행이 된다. 그러나 비지도학습(Unsupervised Learning)은 데이터가 많은데, 어떻게 분류하면 좋을지 모를 때 서로 비슷한 특징끼리 결합 및 그룹화 하는 것을 말한다.

Machine Learning Tutorial 01 - Regression (1)

I 지도 학습 VS 비지도 학습 머신러닝은 크게 두 가지 유형으로 분류한다. 우선 아래 표를 보자. 구분 지도학습(Supervised Learning) 비지도 학습(Unsupervised Learning) 알고리즘(분석모형) 회귀분석분류모형 군집분석 특징 정답을 알고 있는 상태에서 학습모형 평가 방법이 다양한 편 정답이 없는 상태에서 서로 비슷한 데이터를 찾아서 그룹화모형 평가 방법이 제한적 지도학습(Supervised Learning)은 종속변수(Dependent Variable) 선정이 매우 중요하며. 종속변수 선정과 함께 데이터 분석도 같이 병행이 된다. 그러나 비지도학습(Unsupervised Learning)은 데이터가 많은데, 어떻게 분류하면 좋을지 모를 때 서로 비슷한 특징끼리 결합 및 그룹화 하는 것을 말한다.