Machine Learning

주요 핵심 머신러닝 리뷰

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 개요 수강생들의 머신러닝을 활용한 웹 개발 프로젝트 전 복습 차원에서 준비함. 주 내용은 주요 참고자료를 기반으로 작성하였으며, 참고자료에 없는 코드는 직접 작성하였음을 밝힘. 가장 인기 있는 모델 XGBoost와 LightGBM 그 외, 선형회귀, 로지스틱 회귀, 결정 트리, 앙상블 학습, 랜덤 포레스트, XGBoost, LightGBM 선형 회귀 선형 회귀식을 활용한 모델 회귀 계수와 절편을 찾는 것이 중요 기초통계에서 다루는 선형 회귀와 기본적인 개념에서는 동일하나, 기초통계에서와 예측 모델에서의 쓰임새는 다르다는 것을 기억한다.

PyCaret, Skorch Using Pipeline

개요 Scikit-Learn의 Pipeline은 강력하다. PyCaret, Skorch에도 사용이 가능하다. Google Colab에서 시도해보자. 필수 라이브러리 설치 pycaret을 설치 한 후에는 반드시 런타임 재시작을 클릭한다. !pip install pycaret Collecting pycaret Downloading pycaret-2.3.5-py3-none-any.whl (288 kB) . . Successfully installed Boruta-0.3 Mako-1.1.6 PyYAML-6.0 alembic-1.4.1 databricks-cli-0.16.2 docker-5.0.3 funcy-1.17 gitdb-4.0.9 gitpython-3.1.24 gunicorn-20.1.0 htmlmin-0.1.12 imagehash-4.2.1 imbalanced-learn-0.7.0 joblib-1.0.1 kmodes-0.11.1 lightgbm-3.3.1 mlflow-1.22.0 mlxtend-0.19.0 multimethod-1.6 pandas-profiling-3.1.0 phik-0.12.0 prometheus-flask-exporter-0.18.7 pyLDAvis-3.2.2 pycaret-2.3.5 pydantic-1.8.2 pynndescent-0.5.5 pyod-0.9.6 python-editor-1.0.4 querystring-parser-1.2.4 requests-2.26.0 scikit-learn-0.23.2 scikit-plot-0.3.7 scipy-1.5.4 smmap-5.0.0 tangled-up-in-unicode-0.1.0 umap-learn-0.

In ML, Data Leakage - 2

머신러닝 전처리 자주하는 안 좋은 습관들 모음 참고 자료: https://scikit-learn.org/stable/common_pitfalls.html Sample 데이터 먼저 가상의 데이터를 하나 생성합니다. from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split random_state = 42 X, y = make_regression(random_state = random_state, n_features = 1, noise = 1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.4, random_state = random_state) Inconsistent preprocessing 모델을 학습시킬 때 이러한 데이터 변환을 사용하는 경우 테스트 데이터든 프로덕션 시스템의 데이터든 후속 데이터셋에도 사용해야 합니다.

In ML, Data Leakage - 1

Data Leakage 모형 평가를 하기 전에 전체 데이터셋을 가공 및 변환함. 이를 평가에 반영하면 새로운 데이터를 예측할 때 부정확한 결과를 도출 할 수 있음. 이를 방지 하기 위해서는 training 데이터만 데이터 전처리를 수행하는 것이 바람직함. Data Leakage를 피하기 위해서는 scikit-learn modeling pipeline을 설계해햐 함. 데이터 준비 가상의 데이터를 준비한다. 데이터는 모두 수치형 데이터로 준비했다. from sklearn.datasets import make_classification X, y = make_classification(n_samples = 1000, n_features = 20, n_informative = 15, n_redundant = 5, random_state = 7) # summarize the dataset print(X.

입문자를 위한 머신러닝 - 오차행렬

용어 정리 영어로는 confusion matrix로 불리우지만, 번역하면서 다양한 단어가 등장하고 있다. 오차행렬, 혼동행렬 제목은 오차행렬이라고 표현했지만, 영어 단어를 그대로 살려 confusion matrix라고 활용한다. Confusion Matrix 분류 모형을 통해 머신러닝을 학습하게 되면 confusion matrix 표를 우선 작성하게 된다. 이 표에서 무엇을 볼 수 있는가? 우선 전체 데이터의 크기를 확인할 수 있다. (165명) 예측값 YES는 (100+10) 110명이고, 예측값 NO는 (50+5) 55명이다. 실제값 YES는 (100+5) 105명이고, 실제값 NO는 (50+10) 60명이다. 기본 영어를 정의해본다.

입문자를 위한 머신러닝 - GBM

공지 본 소스코는 교재 파이썬 머신러닝 완벽 가이드 코드를 제 수업을 드는 학생들이 보다 편하게 구글 코랩에서 사용할 수 있도록 만든 예제입니다. 책 구매하세요! http://www.yes24.com/Product/Goods/87044746?OzSrank=1 Gradient Boosting Machine 이제 GBM에 대해 학습하도록 합니다. GBM에 대해 이해하기 위해서는 경사하강법에 대해 배워야 합니다. 경사하강법은 쉽게 말하면 가장 적은 오차를 찾아가는 방법론 중이 하나입니다. 자세한 내용은 유투 강의를 들어주시기를 바랍니다. (Gradient Descent, Step-by-Step) 위 이론을 sklearn에서 구현한 것이며, 이 이론을 기반으로 다양한 알고리즘이 개발 되어 있습니다.

입문자를 위한 머신러닝 - 랜덤 포레스트

공지 본 포스트는 교재 파이썬 머신러닝 완벽 가이드 코드를 제 수업을 드는 학생들이 보다 편하게 구글 코랩에서 사용할 수 있도록 만든 예제입니다. 책 구매하세요! http://www.yes24.com/Product/Goods/87044746?OzSrank=1 Random Forest 랜덤 포레스트의 개요 배깅의 대표적인 알고리즘 랜덤 포레스트는 개별 트리가 학습하는 데이터 세트는 전체 데이터에서 일부가 중첩되게 샘플링 된 데이터 세트 부트스트래핑 부할 방식 채택 참고 강의 이론 https://www.youtube.com/watch?v=Z97uDTsvojY https://www.youtube.com/watch?v=J4Wdy0Wc_xQ !wget https://archive.ics.uci.edu/ml/machine-learning-databases/00240/UCI%20HAR%20Dataset.zip !unzip 'UCI HAR Dataset.zip' !mv UCI\ HAR\ Dataset human_activity --2020-11-27 05:21:51-- https://archive.

Feature Engineering with Housing Price Prediction - Numerical Features

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 개요 Feature Engineering를 이해하고 실습한다. 결측치를 처리한다 Categorical Feature를 다룬다. I. 사전 준비작업 Kaggle API 설치 후 데이터를 Kaggle에서 직접 가져오는 것을 구현한다. (1) Kaggle API 설치 구글 코랩에서 API를 불러오려면 다음 소스코드를 실행한다. !

Feature Engineering with Housing Price Prediction - Categorical Features

강의 홍보 취준생을 위한 강의를 제작하였습니다. 본 블로그를 통해서 강의를 수강하신 분은 게시글 제목과 링크를 수강하여 인프런 메시지를 통해 보내주시기를 바랍니다. 스타벅스 아이스 아메리카노를 선물로 보내드리겠습니다. [비전공자 대환영] 제로베이스도 쉽게 입문하는 파이썬 데이터 분석 - 캐글입문기 개요 Feature Engineering를 이해하고 실습한다. 결측치를 처리한다 Categorical Feature를 다룬다. I. 사전 준비작업 Kaggle API 설치 후 데이터를 Kaggle에서 직접 가져오는 것을 구현한다. (1) Kaggle API 설치 구글 코랩에서 API를 불러오려면 다음 소스코드를 실행한다. !

Validation schemes for 2-nd level models

There are a number of ways to validate second level models (meta-models). In this reading material you will find a description for the most popular ones. If not specified, we assume that the data does not have a time component. We also assume we already validated and fixed hyperparameters for the first level models (models). Simple holdout scheme Split train data into three parts: partA and partB and partC. Fit N diverse models on partA, predict for partB, partC, test_data getting meta-features partB_meta, partC_meta and test_meta respectively.