I. 개요

Evaluation measures are: + Rating errors: MSE, RMSE, MAE + Top-N recommendations: TPR/FPR (ROC), precision and recall

II. 패키지 설치

# install.packages("recommenderlab")
library(recommenderlab)
help(package = "recommenderlab")

III. 데이터 수집 및 전처리

data("MovieLense")
MovieLense100 <- MovieLense[rowCounts(MovieLense) > 100,]
MovieLense100
## 358 x 1664 rating matrix of class 'realRatingMatrix' with 73610 ratings.

VI. 추천시스템 모델링 구현 및 추천

train <- MovieLense100[1:70]
rec <- Recommender(train, method = "UBCF")
rec
## Recommender of type 'UBCF' for 'realRatingMatrix' 
## learned using 70 users.
pre <- predict(rec, MovieLense100[101], n = 10)
as(pre, "list")
## $`291`
##  [1] "Braindead (1992)"                                        
##  [2] "Bad Taste (1987)"                                        
##  [3] "Mrs. Brown (Her Majesty, Mrs. Brown) (1997)"             
##  [4] "Cry, the Beloved Country (1995)"                         
##  [5] "Gridlock'd (1997)"                                       
##  [6] "Charade (1963)"                                          
##  [7] "Nosferatu (Nosferatu, eine Symphonie des Grauens) (1922)"
##  [8] "Ruling Class, The (1972)"                                
##  [9] "Brassed Off (1996)"                                      
## [10] "It's My Party (1995)"

V. 결론